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Abstract

Granger causality (GC) and transfer entropy (TE) are
commonly used methods for studying causality between
physiological signals. Recently, neural networks (NN) ap-
proaches have been introduced for TE estimation and GC
detection. This study compared traditional estimation of
TE using adaptive partitioning (DVP), with two NN ap-
proaches: neural network GC (nnGC) and neural net-
work TE (nnTE). The comparison was performed based
on their ability to detect interactions and their computa-
tion times. The study used three simulation models (linear,
nonlinear, and linear + nonlinear) and cardio-respiratory
data from a polysomnography study of 26 subjects. In
the simulations, DVP outperformed the NN-based methods
(mean area under the receiving operating curve – AUC:
0.99, computation time: 0.07 s). nnGC performed well
(mean AUC: 0.98) but was slower than DVP (167.07 s),
while nnTE struggled with the linear and linear + nonlin-
ear models (mean AUC: 0.75 and 0.49, respectively) and
was the slowest (943.83 s). In the clinical data, nnGC and
nnTE detected interactions on 9 and 10 subjects, respec-
tively, which aligned with the results obtained by DVP (me-
dian of 12 subjects). These findings imply that these NN-
based methods provide a suitable model-free alternative
for studying cardio-respiratory interactions during sleep.

1. Introduction

The study of complex time series obtained from physio-
logical systems can unveil underlying interactions between
them, which can be linear, nonlinear, or a combination of
both. To study these interactions, different methods have
been developed using parametric and nonparametric ap-
proaches [1].

Statistics-based methods are a group of parametric ap-
proaches typically based on predefined models describing
mainly linear interactions. An example of these methods is
Granger causality (GC). Its linear version relies on vector
autoregressive models and predictability to detect causal
and directed relationships between time series. A nonlin-
ear version of GC was introduced in 1992 in the field of

economy, but it was not until recently that it was applied
in physiology [2].

Information theory-based methods are a group of non-
parametric approaches to study causality and information
flow. Transfer entropy (TE) is one of the best known
information-theoretic methods. TE can identify linear and
nonlinear interactions, and their direction, between time
series. It is based on Shannon entropies and focuses on
the reduction of uncertainty. TE and GC are equivalent for
Gaussian variables with linear interactions [1].

Recent developments use neural networks (NN) to de-
tect linear and nonlinear GC [3], estimate entropies, and
compute TE [4]. This could provide a model-free solu-
tion for the study of physiological interactions, reducing
the definition of the parameters needed to estimate GC or
TE. The analysis of the cardio-respiratory interactions dur-
ing sleep is one example of the applications that can benefit
from these approaches, as it is hypothesized that the linear
and nonlinear dynamics of these time series vary during
the sleep cycle.

This study compared two NN-based methods and a tra-
ditional method to estimate TE, to understand if the new
approaches have advantages over the traditional ones to
analyze cardio-respiratory interactions. The selected NN-
based methods detected GC (nnGC) using a multilayer per-
ceptron as described in [3], and estimated TE (nnTE) using
a fully connected network, with a modified version of the
model presented in [4]. The traditional method for TE esti-
mation was adaptive partitioning (DVP), that according to
[5] was the best approach to study cardio-respiratory inter-
actions during sleep. The performance was compared on
three simulation models (linear, nonlinear, linear + non-
linear). Then, nnGC and nnTE were applied to cardio-
respiratory signals of polysomnography recordings during
light and deep sleep. These results were compared with the
ones obtained by DVP in previous studies [5].

2. Methodology

2.1. Adaptive partitioning

Transfer entropy (TE) is a measure of information trans-
fer between processes, based on Shannon entropy. The
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TE between random processes X = {x1, x2, ..., xN} and
Y = {y1, y2, ..., yN} can be understood as the reduction
of uncertainty in the future values of Y , when also consid-
ering the past values of X rather than only considering the
past values of Y . Additionally, it is an asymmetric measure
that indicates the direction of the information flow. The TE
from X to Y is defined as [5]:

TEX→Y = H(Y |Y −)−H(Y |X−, Y −), (1)

where H(Y |Y −) is the conditional entropy of Y given its
own past, and H(Y |X−, Y −) is the conditional entropy of
Y given its own past and the past of X . Y − and X− are
called embedding vectors.

In this work, an available implementation of the adap-
tive partitioning (DVP) estimator combined with a uniform
embedding technique was used. The embedding vectors
were generated as X− = {xt−k, xt−2k, ..., xt−mk} and
Y − = {yt−k, yt−2k, ..., yt−nk}, with k the embedding de-
lay and m and n the embedding dimensions, and m = n.
The DVP estimator combined the Darbellay-Vajda algo-
rithm with ordinal sampling. For this, the time series re-
sulting from sampling X and Y were replaced by their or-
dinal representations U and V , respectively, and then the
space defined by V , U− and V − was iteratively partitioned
into cubes of different sizes, until all partitions had an even
distribution of points [6].

This method was selected because in [5] it was identified
as the best option to study interactions in sleep data.

A detailed account of the definition of TE is presented
in [1,5]. Additional information for embedding techniques
and other entropy estimators can be found in [1, 5–7].

2.2. Neural network transfer entropy

Previous studies [1,5–7] have shown that the traditional
approaches to estimate (1) can introduce significant bias
and, in some cases (e.g., linear estimator), a model for the
time series dynamics is assumed. To overcome these dif-
ficulties, an approach based on neural networks (NN) to
estimate conditional entropies was proposed in [4]. The
network consisted of one input layer, two fully connected
layers with 50 nodes, a rectified linear unit (ReLU) activa-
tion function and an output layer with softmax activation
function. The training was based on the cross-entropy loss
minimization. A quantization was performed on the time
series, as this model is not defined for continuous data.

This work proposed a modified version of the model of
[4]. The probability estimation is modelled as a regres-
sion problem and not as a classification problem, which
led to the definition of a new loss function, composed of
two terms as:

L = − 1

N

∑
n

ln(Gθ(xn)) + λ

(
1−

∑
c

Gθ(xc)

)2

(2)

The first one is the empirical estimator for the cross-
entropy as presented in [4], where xn is the n-th sample of
X , N is the total number of samples, and Gθ(xn) is the

output of the NN for xn. The second one is a regulariza-
tion term to ensure that the sum of the probabilities of all
possible values was equal to 1, where λ is a regularization
parameter and xc is the c-th element of the finite set of val-
ues that xn can take. Additionally, the activation function
of the last layer was changed to a sigmoid, so that the esti-
mated probabilities were always between 0 and 1. For this
model, the number of quantization levels was tuned and
defined as 5. The output corresponds to the conditional
probabilities needed to estimate the conditional entropies
in (1) and compute the TE.

2.3. Neural network Granger causality

Granger causality (GC) is a statistical measure of causal-
ity between stochastic processes. Assuming an autoregres-
sive linear model for Y , it can be said that Y is explained
by its present and past values, and that the part that is not
explained by the model corresponds to a random white
noise. Now, if X Granger-causes Y , a model that better
explains Y is defined as:

Yt =

N∑
j=1

(AjYt−j) +

N∑
j=1

(BjXt−j) + ϵt, (3)

where there is at least one non-zero Bj coefficient [1].
However, this definition does not consider nonlinear in-
teractions. For this reason, nonlinear GC approaches have
been proposed [1], but in practice their applicability has
been limited due to over-fitting leading to the detection of
many false positives (i.e., non existing interactions) [2].
Lately, new ways to apply these approaches using NN have
been proposed. In [3], the authors presented a multilayer
perceptron model with a hierarchical group lasso loss func-
tion and a proximal gradient descent optimization, to iden-
tify the presence of GC between time series. The network
consisted of one input layer, a fully connected layer and a
ReLU activation function. Thanks to the combination of
the loss function and optimization method, the weights of
the first layer were forced to be zero if there is no GC be-
tween the time series. If the norm of these weights was
different from zero, X Granger-caused Y . This value is a
proxy of the (nonlinear) GC and is only an indicative of
the presence of the interactions between the sampled pro-
cesses.

In this work, the number of units in the hidden layer
and the regularization term for the loss function were tuned
based on [3], and defined as 5 and 0.002, respectively.

2.4. Simulation data

The three simulation models presented in [5] were used
to test if the NN-based approaches could identify the pre-
defined interactions. In all cases, the interactions were
from X to Y , but not in the opposite direction. Fifty trials
(pairs of time series) of each model were simulated. For
each trial a different seed for the random components was
used. The simulated time series had N = 200, 500, 1000
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and 2000 samples, to study the effect of the time series
length on the detection of the interactions.

The first model was a linear model defined as xn =
−0.5xn−2 + εxn , yn = −0.5yn−2 + axn−τ + εyn , where
εxn

and εyn
were gaussian noises with zero mean (µ)

and unit variance (σ2). The interaction was modulated by
a = 0.5. The interaction occurred at τ = 1.

The second model was a nonlinear model defined as
xn = sxn

+ ξxn
, yn = (b xn−τ )

2 + ξyn
, where sxn

was
a random gaussian signal with µ = 10 and σ2 = 1, ξxn

and ξyn
were laplacian noises with µ = 0 and σ2 = 1, and

b = 0.4 was the coupling factor. The interaction occurred
at τ = 2.

The last model included linear and nonlinear interac-
tions, and it was defined as xn = 0.3xn−1 + εxn

, yn =

0.3yn−1 + cxn−τl + d
(

2.4−0.9(xn−τnl
)

1+exp(−4(xn−τnl
))

)
+ εyn

, where

εxn and εyn were gaussian noises with µ = 0 and σ2 = 1,
and c = 0.4 and d = 0.6 controlled the linear and nonlin-
ear dynamics, respectively. The linear and nonlinear inter-
actions occurred at τl = 2 and τnl = 4, respectively.

2.5. Clinical data

Polysomnography (PSG) recordings of 26 subjects (me-
dian (25th;75th) age and BMI: 37 (34; 47) years, 24.98
(23; 32.19) kg/m2), referred to the sleep laboratory of the
UZ Leuven were used. The study was approved by the
ethical committee of UZ Leuven (S53746, S60319) and
all subjects signed an informed consent. One-minute seg-
ments from the ECG and respiratory (nasal airflow) signals
(fs = 500 Hz) were extracted, for light (NREM1) and
deep (NREM3) sleep. In total, 1891 apnea-free segments
were used.

The ECG signals (lead II) were filtered with a Butter-
worth bandpass filter (0.03 - 150 Hz), and then with a notch
filter (50 Hz). The locations of the R-peaks were identified
and the missed, false and ectopic beats were corrected us-
ing the integral pulse frequency modulation model. The
corrected locations were used to compute the heart rate
variability (HRV) time series, which was then resampled
at 4Hz. A final Butterworth bandpass filter (0.03 - 1 Hz)
was applied.

The respiratory (RESP) signal was bandpass filtered
with a Butterworth filter (0.03 - 1 Hz), and then resampled
at 4Hz.

For the detailed description of the data and the prepro-
cessing, see [5].

2.6. Performance evaluation

2.6.1. Simulation models

Since nnGC is only able to detect the presence of in-
teractions, the comparison of the methods was done by a
binary estimation of presence or absence of interactions
between time series. For the simulation models, the esti-
mates of each of the approaches was binarized by defining

a decision threshold. For the nnGC, the threshold was de-
fined for the weights of the first layer of the network. For
the nnTE and DVP the threshold was defined for the es-
timated TE. There were interactions detected if the norm
of the weights or the estimation of TE was higher than the
threshold, for nnGC, and for nnTE and DVP, respectively.

A receiver operating characteristic (ROC) curve was cal-
culated varying the decision threshold of the weights of
nnGC and the estimated TE of DVP and nnTE.

For this analysis, a maximum lag to observe the inter-
actions was defined. This lag was fixed at 2 for the linear
and nonlinear models, and at 4 for the linear + nonlinear
model.

2.6.2. Clinical data

The interactions during sleep were analyzed from RESP
to HRV, and the maximum lag was defined as 5 seconds
(20 samples). In this case, there was no ground truth avail-
able. The results obtained by nnGC and nnTE were as-
sessed by selecting an appropriate threshold, and compar-
ing the norm of the weights or the estimation of the TE
with this threshold.

The threshold for the nnGC was defined using the sim-
ulation ROC curves. The operating point with a false pos-
itive rate of 5% was selected, and The threshold corre-
sponding to this point was used.

For nnTE, the threshold was defined based on the results
obtained in [5]. The threshold was selected as the lower TE
value of the significant segments for the TERESP→HRV

when studying the nonlinear interactions. This value was
selected because, as mentioned in [5], if the TE was signif-
icant for nonlinear interactions there was a possibility that
a linear interaction was also present.

The results, in terms of for how many patients the inter-
actions were detected, were compared against the results
obtained in [5].

3. Results and Discussion

Table 1 presents the area under the ROC curve (AUCs)
for each method and for each simulation model, for the
four time series lengths.

DVP and nnGC are highly specific, obtaining values
very close to zero when there is no interaction between
the time series, and values almost perfectly separable from
zero when the interaction exists. Nevertheless, DVP out-
performs the NN-based approaches. This can be because
DVP is based on a pre-defined method of probability esti-
mation, compared to the behavior of a NN that only relies
on the loss function optimization to estimate the desired
probabilities. Additionally, NN-based methods are data
driven, which renders them more sensitive to the samples
used during training.

DVP detected the interactions for all three simulation
methods with an AUC higher than 0.97. nnGC had a higher
performance for the linear and linear + nonlinear models
(mean AUC 0.99) and a slightly lower performance for
the nonlinear model (mean AUC 0.96). These results can
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Table 1. Area under the curve (AUC) for each of the ap-
proaches for the simulation models

Model Samples DVP nnGC nnTE
Linear 200 0.973 0.986 0.472

500 1 1 0.665
1000 1 0.974 0.858
2000 1 0.990 0.993

Nonlinear 200 1 1 0.870
500 1 0.980 0.973
1000 1 0.940 0.984
2000 1 0.910 1

Linear + Nonlinear 200 0.975 1 0.462
500 1 1 0.490
1000 1 1 0.505
2000 1 0.960 0.507

be explained considering that the proposed solution is still
based on an autoregressive model, and the nonlinear simu-
lation model does not follow this pattern. The nnTE strug-
gled to identify the linear and linear + nonlinear interac-
tions, with a worse performance in the latter, which can be
related to the fact that by considering a higher maximum
lag the dimensionality of the problem increases making it
necessary to use a huge amount of data for the estimation
of the probabilities. To address this issue it could be use-
ful to test different architectures of the network, like an
encoder-decoder to reduce the dimensionality of the input
and then compute the probabilities with the extracted fea-
tures.

Additionally, the methods differed in terms of computa-
tion times expressed as the average time to process a pair
of time series in both directions of interactions, with DVP
being the fastest (0.07 seconds), nnGC following (167.01
seconds) and nnTE the slowest (943.83 seconds). This fac-
tor could affect the usability of nnGC and nnTE.

For the clinical data, the threshold for nnGC was
0.097 and the threshold for nnTE was 0.089. With these
thresholds, the number of patients for which interactions
from RESP to HRV were detected for both NREM1 and
NREM3 were 9 with nnGC and 10 with nnTE. Separately,
for NREM1 and NREM3, nnGC detected interactions for
13 and 12 patients, respectively. In the case of nnTE, for
NREM1 it detected interactions for 14 patients and for
NREM3 for 19 patients.

These results are consistent with the ones obtained in
[5], in which a median of 12 patients were observed to
have significant TERESP→HRV at 4 Hz, for both linear
and nonlinear interactions and over all the lags (1 to 5 sec-
onds). However, these results could benefit from a sur-
rogate analysis similar to the one performed in [5]. This
analysis should be designed for each of the methods sep-
arately, as they do not focus on the same type of measure
(i.e., GC vs. TE).

4. Conclusion

This study compared two NN-based methods (nnGC
and nnTE) and a traditional TE estimation approach (DVP)
for the detection of interactions in simulation models and
in clinical data. The results suggest that nnGC is preferred
over nnTE given that it is more specific when detecting the
interactions and presents a lower computation time. How-
ever, as it only detects the interactions based on a proxy
of GC, more research is suggested to interpret its outputs
for the quantification of the interaction. The performance
of nnTE was affected by the selection of the maximum
lag. To overcome this, tests with other architectures could
be done, for example, with an encoder-decoder network
to handle the changes in dimensionality. Regarding their
application to clinical data, both methods show potential
for the analysis of cardio-respiratory interactions during
sleep, but additional developments like surrogates analy-
sis are needed to confirm these results.
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